Понедельник, 25.09.2017
                       


МЕНЮ
УЧИТЕЛЮ БИОЛОГИИ
К УРОКАМ БИОЛОГИИ
ПУТЕШЕСТВИЕ В МИР РАСТЕНИЙ
В МИРЕ ЖИВОТНЫХ
АНАТОМИЯ БЕЗ ТАЙН И ЗАГАДОК
ИНТЕРЕСНО УЗНАТЬ
БИОЛОГИЧЕСКАЯ РАЗВЛЕКАЛОВКА
Категории раздела
ВВЕДЕНИЕ В БИОЛОГИЮ [66]
ЭКОЛОГИЕ ТРОПЫ [19]
РЕКОРДЫ В МИРЕ ЖИВОТНЫХ [94]
ЗНАКОМЬТЕСЬ, ЭТО УЛИТКИ [7]
ПУТЕШЕСТВИЕ В МИР РАСТЕНИЙ [146]
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКТ К УРОКАМ [168]
УВЛЕКАТЕЛЬНО О МИКРОБИОЛОГИИ [29]
ОНЛАЙН-УЧЕБНИКИ [306]
ПРОВЕРКА ЗНАНИЙ НА УРОКАХ БИОЛОГИИ В 11 КЛАССЕ [142]
УДИВИТЕЛЬНЫЕ ЖИВОТНЫЕ [23]
ЧЕЛОВЕК [361]
ОНЛАЙН-ЭНЦИКЛОПЕДИЯ ЖИВОЙ ПРИРОДЫ [90]
ШКОЛЬНИКАМ О ДНК [73]
ДИДАКТИЧЕСКИЕ МАТЕРИАЛЫ К УРОКАМ БИОЛОГИИ. 8 КЛАСС [62]
ТИПОВЫЕ ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ ПОДГОТОВКИ К ГИА [11]
ИНТЕРЕСНЫЕ ФАКТЫ К УРОКУ БИОЛОГИИ [18]
РАСТЕНИЯ. ПАРАЛЛЕЛЬНЫЙ МИР [19]
КОНСПЕКТЫ УРОКОВ БИОЛОГИИ [82]
ВНЕКЛАССНЫЕ МЕРОПРИЯТИЯ ПО БИОЛОГИИ [27]
РАСТЕНИЯ И ЧИСТОТА ПРИРОДНОЙ СРЕДЫ [26]
ЛЕКЦИИ ПО ОБЩЕЙ БИОЛОГИИ [25]
БИОЛОГИЧЕСКИЕ КРОССВОРДЫ [54]
АТЛАС ЮНОГО БИОЛОГА [88]
ЭКОЛОГИЯ ЖИВОТНЫХ [46]
ЖИВОТНОЕ ИЛИ РАСТЕНИЕ. ВВЕДЕНИЕ В НАУКУ О ЖИЗНИ [9]
УЧЕБНЫЕ ФИЛЬМЫ ПО БИОЛОГИИ [23]
ЭМОЦИОНАЛЬНАЯ ЖИЗНЬ ЖИВОТНЫХ [23]
РАБОЧИЕ МАТЕРИАЛЫ К УРОКАМ ОБЩЕЙ БИОЛОГИИ В 10-11 КЛАССАХ [67]
БИОЛОГИЧЕСКИЕ ОПЫТЫ [34]
ГРИБЫ [15]
ПОДГОТОВКА К ИТОГОВОЙ ПРОВЕРКЕ ЗНАНИЙ ПО КУРСУ БИОЛОГИИ [68]
КАК БАКТЕРИИ СДЕЛАЛИ НАШ МИР ОБИТАЕМЫМ [14]
ГЕНЕТИКА [95]
МОРСКИЕ РАКОВИНЫ [60]
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0
Главная » Файлы » КАК БАКТЕРИИ СДЕЛАЛИ НАШ МИР ОБИТАЕМЫМ

Суперзаряд двигателей (продолжение)
09.01.2017, 17:51

Продукция кислорода создала благоприятные возможности для развития у микроорганизмов новых метаболических путей. Эти новые возможности привели к изменениям в распределении и распространенности нескольких других элементов, в первую очередь серы и азота. До массовой продукции кислорода большая часть серы в океанах содержалась в форме сероводорода, газа с запахом тухлых яиц, который в то время, как и сейчас, поставлялся в океаническую толщу из глубоководных вулканов – гидротермальных источников, называемых «черными курильщиками». Вода, вытекающая из этих подводных трещин, чрезвычайно горяча – температура ее составляет около 300 ℃ – и содержит большие количества сульфидов и железа; охлаждаясь, они образуют минеральные трубки, состоящие из «золота дураков», пирита. В присутствии кислорода некоторые микроорганизмы развили у себя набор новых наномеханизмов, позволивший им забирать водород у сероводорода и использовать его для связывания углекислого газа и создания органических молекул. Благодаря кислороду образовался электрический градиент между богатыми электронами потоками и газами, выходящими из подводных расщелин, и бедным электронами газообразным кислородом и другими молекулами, содержащимися в океанических водах вокруг «черных курильщиков». Этот электрический градиент обеспечил движущую силу для нового типа метаболизма. В отличие от фотосинтезирующих зеленых серных бактерий наподобие тех, что живут в Черном море, эти сульфидокисляющие микроорганизмы гидротермальных источников могут расщеплять сероводород, не используя непосредственно энергию Солнца. Их механизм связывания углерода практически идентичен тому, что найден у цианобактерий, однако метаболическая инновация, получившая название хемоавтотрофии (то есть способности питать себя химическим путем), позволяет связыванию углерода происходить в глубинных, темных слоях океана – но лишь потому, что цианобактерии производят кислород в освещенной солнцем части океана на сотни и тысячи метров выше.

Основная концепция заключается в том, что, если водород непосредственно связан с кислородом, как в случае воды, необходимо большое количество энергии, чтобы разрушить эту связь. Единственным источником энергии, используемым для того, чтобы извлечь водород из воды биологическим путем, является видимая часть спектра излучения Солнца. Водород же, связанный с серой, извлечь гораздо проще. Чтобы извлечь водород из сульфида, требуется лишь около 10 % энергии, необходимой для извлечения его из воды, однако в присутствии кислорода сера может быть трансформирована микроорганизмами с образованием оксид-сульфата, в котором атом серы связан с четырьмя атомами кислорода.

Является ли микробиологическое окисление сероводорода той ключевой реакцией, которая может объяснить задержку в распространении кислорода? Долгое время я считал, что это возможно. Однако, когда мы узнали немного больше о поступлении серы в древние океаны и провели некоторые простые расчеты, такое представление стало казаться все более и более невероятным. Увеличение содержания кислорода могло бы превратить в ржавчину все железо и окислить до сульфатов все сульфиды, однако никогда бы не потребовалось трехсот миллионов лет или более на то, чтобы кислород распространился в атмосфере. Что-то здесь было не так. И снова эксперименты в Черном море предоставили ключ к разгадке.

В водяном столбе Черного моря имеется место, где кислород исчезает, а содержание сероводорода начинает повышаться. У меня ушло несколько лет на то, чтобы понять, как этот переходный момент в химизме Черного моря отражает химизм Земли и распространение в атмосфере кислорода. Даже несмотря на то, что возраст глубин Черного моря составляет всего лишь 1500 лет, здесь имеется переход в микробиологическом метаболизме от верхних, насыщенных кислородом слоев воды к глубинным слоям. Я чувствовал, как будто возвращаюсь во времени к моменту Кислородной катастрофы.

Наиболее распространенный газ на Земле – азот, однако он присутствует в форме, отличающейся чрезвычайной химической стабильностью. Молекула газообразного азота в атмосфере нашей планеты состоит из двух атомов этого элемента, связанных друг с другом тремя химическими связями. В отличие от кислорода газообразный азот (N2) практически инертен. Если бы атмосфера Земли состояла исключительно из азота, газеты на наших тротуарах никогда бы не желтели и не разлагались, железо никогда бы не ржавело, а свечи не горели. Однако если бы водород не соединялся с азотом, жизни бы на Земле не существовало, поскольку без азота, связанного с водородом, микроорганизмы не смогли бы производить ни аминокислоты, ни нуклеиновые кислоты. По счастью, микроорганизмы могут прикреплять водород к азоту, хотя это и требует большого количества энергии.

Я понял, что азотный цикл, который полностью зависит от деятельности микроорганизмов, почти в точности повторяет цикл серы. Азот требуется для производства белков и других необходимых молекул, нужных клеткам. Однако, чтобы заполучить азот в свои клетки, организмы должны либо добывать его из окружающей среды в виде ионов, либо каким-то образом химически изменять атмосферный азот. Задолго до появления газообразного кислорода на Земле развились микроорганизмы, которые могли прикреплять водород к азоту, содержащемуся в атмосфере (или же растворенному в воде), при помощи сложного и чрезвычайно древнего наномеханизма – фермента, называемого нитрогеназой. Продуктом этой реакции является аммоний. Он представляет собой одиночный атом азота с прикрепленными к нему четырьмя атомами водорода (NH4+). В отсутствие кислорода аммоний весьма стабилен, однако, когда кислород стал доступен, микроорганизмы выработали другой набор механизмов, позволивших им отрывать водород от азота и использовать его для превращения углекислого газа в органические соединения, не используя энергию Солнца. Подобно своим собратьям из океанских глубин, эти микроорганизмы также являются хемоавтотрофами: они используют для жизни электрический градиент между насыщенной электронами молекулой аммония и обедненной электронами молекулой кислорода. Эти окисляющие аммоний микроорганизмы не могут добывать себе средства к существованию без присутствия в окружающей среде свободного кислорода. Продуктами их реакции являются азотные соединения, содержащие кислород, в первую очередь нитраты (NO3–), представляющие собой атом азота с тремя атомами кислорода, непосредственно связанными с ним. Так же как и в случае с серой, в отсутствие кислорода другие микроорганизмы могут использовать нитраты для респирации; однако, в отличие от случая с серой, анаэробная респирация нитратов не ведет к образованию молекулы с прикрепленным к ней водородом, наподобие аммония, – ее результатом является выработка газообразного азота.


Рис. 20. Вертикальный профиль распределения двух форм азота – нитратов (NO3) и аммония (NH4) – в водах Черного моря. Отметим, что на тех глубинах, где содержание кислорода становится исчезающе низким (см. рис. 1), обе эти формы азота также встречаются чрезвычайно редко


Анализ химических соединений азота, содержащихся в водах Черного моря, показывает, что в верхних, насыщенных кислородом слоях широко распространены нитраты и нет аммония, в то время как в глубинных слоях, где кислород отсутствует, а воды насыщены сероводородом, аммоний становится единственной формой связанного азота. Однако более внимательное рассмотрение вертикального распределения кислорода и сероводорода в Черном море заставило меня задуматься. В той точке, где кислорода уже совсем мало, в то время как сероводорода тоже еще почти нет, и нитраты, и аммоний практически отсутствуют. Это место, где микроорганизмам очень трудно выживать. Цианобактерии, производившие кислород в древних океанах, по-видимому, помогали другим микроорганизмам использовать оксиды азота для респирации, однако в отличие от серного цикла, где продуктом респираторной реакции являлись сульфаты, то есть ионы, в случае с азотом это были два газа, которые возвращались обратно в атмосферу. Азотный цикл, полностью приводимый в действие микроорганизмами, и предотвращал на протяжении долгого времени появление кислорода на планете. В самом деле, мои исследования в Ратгерском университете, проведенные совместно с моими коллегами, и прежде всего с Линдой Годфри, показывают, что как минимум за 300 млн лет до Кислородной катастрофы цианобактерии уже производили кислород, который в конечном счете использовался другими микроорганизмами для превращения аммония в нитраты и затем высвобождения азота в виде газа. В результате этого процесса океаны теряли связанный азот. Без связанного азота фитопланктон не мог производить большое количество клеточного вещества, и образование органического углерода не происходило с такой легкостью. Если органический углерод почти не образуется, он и не откладывается в геологических пластах. Однако при отсутствии погребенного органического углерода в атмосфере не может накапливаться кислород. По сути, возникает ощущение, как будто вся система микроорганической жизни в древних океанах была настроена на такую цепь обратных реакций, чтобы оставаться бескислородной. Почти нет сомнений в том, что жизнь возникла в бескислородных условиях и микроорганический метаболизм поддерживал на планете бескислородную среду на протяжении первой половины истории Земли. В какой-то момент началась выработка N2 и N2O (закись азота, или веселящий газ). Оба газа покидали пределы океанов, однако около 2,4 млрд лет тому назад выработка цианобактериями кислорода наконец перевесила потребление этого газа другими микроорганизмами, и атмосфера начала насыщаться кислородом. Возможно, это покажется удивительным, но мы до сих пор не знаем наверняка, как это произошло.

Эволюция планеты, содержащей в своей атмосфере кислород, была кульминацией сотен миллионов лет эволюционных преобразований наномеханизмов, которые в конечном счете смогли приспособить солнечную энергию для расщепления воды. Однако распространение кислорода также оказало сильнейшее воздействие на эволюцию самих микроорганизмов.

Будучи чрезвычайно химически активным газом, кислород является замечательной, но в то же время и опасной средой для помещения в нее водорода при респирации. Замечательной – поскольку реакция водорода с кислородом позволяет извлечь большое количество энергии. В самом деле, если вы зажжете спичку в газовой смеси водорода и кислорода, вы вызовете мощный взрыв. Эти два газа вместе в буквальном смысле представляют собой ракетное топливо. Мир, богатый кислородом, – мир высоких энергий. Микроорганизмам, использовавшим кислород для дыхания, потребовалось проделать лишь относительно небольшие изменения в своем респираторном аппарате, чтобы при присоединении водорода в процессе респирации клеточного вещества он не вступал с кислородом в реакцию настолько бурную, чтобы буквально сжечь сами клетки. Для того чтобы взять эту реакцию под контроль, потребовалось возникновение другого наномеханизма – такого, который очень аккуратно присоединял бы к кислороду электроны и протоны. Энергия этой реакции была огромной: благодаря ей микроорганизмы смогли генерировать в восемнадцать раз больше АТФ на каждую респирированную ими молекулу сахара, чем получали при помощи древней анаэробной респираторной системы. Мы позаимствовали этот процесс, чтобы использовать в наших собственных внутриклеточных наномеханизмах для выработки энергии – митохондриях. Производство кислорода в буквальном смысле привело к суперзаряду двигателей жизни!


Рис. 21. Графики изменений со временем содержания кислорода, азота и сероводорода. Можно представить ход изменений в химизме океана в период, предшествующий Кислородной катастрофе (~2,4 млрд лет тому назад), а также изменений, последовавших за насыщением атмосферы и океанов кислородом


Эволюция наномеханизмов также сыграла критическую роль в развитии циклов элементов, по сей день способствующих продолжению жизни на Земле. Благодаря теплу, вырабатываемому при радиоактивном распаде элементов в недрах земной коры, происходит постоянное пополнение необходимых для жизни элементов посредством выбрасывания вулканами газов, выветривания горных пород и накопления отмерших микроорганизмов в осадочной толще. Этот процесс не останавливался начиная с момента формирования нашей планеты 4,55 млрд лет тому назад, и он будет продолжаться еще несколько миллиардов лет в будущем. Тем не менее эволюция микробиологических наномеханизмов и связанное с ней распространение кислорода изменили циклы обращения этих элементов в планетарном масштабе. А именно такая эволюция позволила организмам на всей планете наладить взаимосвязь через свои внутренние механизмы, образовав единый гигантский электронный контур. Этот контур в значительной степени опирается на перенос водорода туда и обратно между четырьмя из шести главных элементов – углеродом, азотом, кислородом и серой.

Для обеспечения связи между метаболизмом различных организмов требуется нечто наподобие «проводов», и двумя такими важнейшими «проводами» для Земли являются океан и атмосфера. Нам даже не надо вставать со своих кресел, чтобы увидеть, как это работает.

Сделайте глубокий вдох. Кислород, который вы только что вдохнули, не был произведен в той комнате, где вы находитесь. За окном не стоит великан с огромной лупой, через которую он фокусирует энергию Солнца на оксидах металлов, и мы не таскаем за спиной культуры водорослей. Мы дышим кислородом зимой, несмотря на то что в нашем непосредственном окружении нет фотосинтезирующих растений. Кислород, который мы вдыхаем, возможно, был произведен миллионы лет назад и любезно доставлен нам из дальних краев земной атмосферой. Давным-давно где-то на Земле неведомые для нас растения и фитопланктон выработали кислород, которым вы и я сейчас дышим. Мы живем благодаря милости незнакомцев. Впрочем, наше дыхание в свою очередь вырабатывает углекислый газ и воду – очень слабенькую газировку (которая, кстати, тоже была изобретена Пристли). Выдыхаемый нами углекислый газ используется фитопланктоном и растениями для выращивания новых растений и фитопланктона в других местах планеты.

Океан также служит проводником для планетарного метаболизма. Океанические течения выносят оксиды азота на поверхность, где фитопланктон поглощает их, чтобы производить новые клетки, некоторые из них погружаются в глубины, становясь источником питания и энергии для микроорганизмов и других форм жизни в глубинах океана. Поскольку океан является огромным взаимосвязанным жидким телом, циркулирующим в глобальном масштабе, воды в глубинных слоях океана получают кислород из атмосферы. В двух важнейших областях океана – Северной Атлантике за Гренландией и в Антарктическом океане – на протяжении зимнего периода образуются очень холодные водные массы. Холодные воды более плотные и поэтому стремятся погрузиться в глубину (наибольшую плотность вода имеет при температуре 4 ℃). Чем холоднее вода, тем больше кислорода она может поглощать. Холодные, плотные, насыщенные кислородом потоки разносят этот газ по всему океану медленным конвейерным течением из Атлантики в Индийский океан, затем через Тихий и обратно. Один оборот такого кольца занимает около тысячи лет. Благодаря этому конвейерному течению микроорганизмы придонных областей океана могут использовать сульфиды или аммоний для связывания углерода благодаря кислороду, выработанному миллионы лет назад в дальних краях. Когда кислород наконец стал доступен и замкнул биологические циклы серы, азота и углерода, он, вполне возможно, также вызвал глобальное изменение климата Земли и соответственно первое массовое вымирание видов на планете.

Существуют убедительные свидетельства того, что приблизительно через 200 млн лет после Кислородной катастрофы в нескольких областях земного шара сформировались массивные ледяные щиты, которые не таяли около 300 млн лет. Это было самое длительное и, может быть, одно из самых обширных оледенений в истории Земли – лед покрывал не только сушу, но также поверхность всех океанов, возможно, вплоть до экватора (так называемая Земля-снежок). Что же вызвало это глобальное изменение климата?

Одной из возможных причин этой климатической подвижки было накопление кислорода в атмосфере. В то время как недра Земли разогреваются радиоактивными процессами, ее поверхность нагревается Солнцем. Солнечное излучение в конечном счете отражается обратно в космос, однако некоторая его часть задерживается покрывалом из газов в атмосфере Земли. В настоящее время наиболее важную роль в захвате тепла играют водяной пар и углекислый газ. Фактически, если бы не присутствие в атмосфере этих так называемых парниковых газов, земные океаны и сейчас были бы покрыты льдом. Однако 2,4 млрд лет тому назад ситуация была еще более экстремальной. В то время Солнце светило приблизительно на 25 % менее ярко, чем сейчас, а это означает, что оно давало меньше тепла. Для того чтобы поверхность океанов оставалась жидкой, парниковые газы должны были быть очень распространены; при этом они должны были очень хорошо поглощать солнечную энергию, в особенности инфракрасное излучение (тип энергии, который мы не можем видеть, однако можем чувствовать кожей, поскольку инфракрасное излучение – это тепло). Одним из газов, наиболее эффективно поглощающих инфракрасное излучение, является метан.

В настоящее время метан занимает относительно скромное место среди парниковых газов, однако 2,4 млрд лет тому назад он почти наверняка был распространен гораздо больше. Метан – очень простой газ, он состоит из одного атома углерода, связанного с четырьмя атомами водорода (CH4). В присутствии кислорода он очень хорошо горит, что означает, что в связях этого газа запасено большое количество энергии. Метан образуется как продукт респирации некоторых микроорганизмов в строго анаэробных условиях: при отсутствии кислорода некоторые микроорганизмы могут при помощи специального наномеханизма извлекать водород из сахаров и других органических молекул и соединять его с углекислым газом, производя метан. Такие микроорганизмы называются археями – это вторая по величине группа прокариотов, открытая Вёзе и Фоксом. Наномеханизмы метанпродуцирующих бактерий чрезвычайно чувствительны к кислороду: даже небольшая концентрация кислорода тотчас останавливает выработку ими метана. В наши дни метаногенные микроорганизмы можно обнаружить в самых разных местах, включая желудки коров и других жвачных животных, а также приблизительно 40 % людей. Однако 2,4 млрд лет тому назад эти организмы, очевидно, имели чрезвычайно широкое распространение в прибрежных водах по всему миру.


Рис. 22. Схема, демонстрирующая различие между метаном (CH4) и углекислым газом (CO2). Обе молекулы представляют собой невидимые газы без запаха. В присутствии кислорода метан превращается в CO2 и воду как в атмосфере, так и посредством действия микроорганизмов


Даже в присутствии кислорода некоторые виды бактерий могут использовать метан как источник энергии и для выращивания клеток. Поглощение метана микроорганизмами – один из наиболее быстрых и эффективных путей уничтожения этого газа. По мере развития у них этой способности аппарат разрушения метана, по-видимому, ощутимо уменьшил приток этого вещества из океанов в атмосферу, а газообразный кислород при помощи солнечного света довершил уничтожение метана в атмосфере. Важнейший из газов, поглощающих инфракрасное излучение, перестал существовать, и слабое молодое Солнце не могло предоставить достаточного количества тепла, чтобы уберечь океаны от замерзания. Последовавшее за этим образование ледяной корки, или шуги, на всей поверхности Мирового океана почти наверняка должно было сократить ареал роста фотосинтезирующих микроорганизмов и одновременно воспрепятствовать обмену газами между океаном и атмосферой. Геологическая летопись показывает, что за этим последовали несколько продолжительных периодов, на протяжении которых океаны были холодными и не были приспособлены для жизни. Киршвинк – тот самый, что окрестил цианобактерии микробами-большевиками, – также в порыве вдохновения придумал для состояния, когда ледяные щиты покрывали всю поверхность океанов, название «Земля-снежок». Если все действительно происходило по описанному сценарию, то это был первый случай в геологической истории Земли, когда микроорганизмы полностью нарушили планетарный климат.

Условия, превратившие планету в «снежок», судя по всему, возникали на ней не единожды. Последний раз это случилось около 750 млн лет тому назад. Невероятно, но во всех случаях небольшому числу выживших микроорганизмов были каким-то образом переданы инструкции по созданию всех основных наномеханизмов. Эти организмы были пионерами, пронесшими жизнь через долгие периоды планетарного опустошения.

Категория: КАК БАКТЕРИИ СДЕЛАЛИ НАШ МИР ОБИТАЕМЫМ | Добавил: admin | Теги: Пол Фальковски, древнейшие самовоспроизводящиеся ор, занимательная зоология, история изучения микроорганизмов, Роберт Гук, бактерии
Просмотров: 35 | Загрузок: 0 | Рейтинг: 0.0/0
РАЗВИТИЕ БИОЛОГИИ

БИОЛОГИЧЕСКИЕ СПРАВОЧНИКИ
Поиск
Н А Ш И   Д Р У З Ь Я








Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Вход на сайт

    Copyright MyCorp © 2017
    Яндекс.Метрика Рейтинг@Mail.ru