Среда, 08.04.2020
                       


МЕНЮ
УЧИТЕЛЮ БИОЛОГИИ
К УРОКАМ БИОЛОГИИ
ПУТЕШЕСТВИЕ В МИР РАСТЕНИЙ
В МИРЕ ЖИВОТНЫХ
АНАТОМИЯ БЕЗ ТАЙН И ЗАГАДОК
ИНТЕРЕСНО УЗНАТЬ
БИОЛОГИЧЕСКАЯ РАЗВЛЕКАЛОВКА
Категории раздела
КАК МЫ ДУМАЕМ [93]
ОТКРЫТКИ "В ЦАРСТВЕ ФЛОРЫ" [354]
ЕСТЕСТВЕННЫЕ ТЕХНОЛОГИИ БИОЛОГИЧЕСКИХ СИСТЕМ [48]
БИОЛОГИЯ ПОВЕДЕНИЯ ЧЕЛОВЕКА И ДРУГИХ ЗВЕРЕЙ [156]
МОРСКИЕ ЖИВОТНЫЕ [124]
ДАРВИНИЗМ В ХХ ВЕКЕ [60]
ДОИСТОРИЧЕСКАЯ ЖИЗНЬ [45]
ОЛИМПИАДЫ ПО БИОЛОГИИ [36]
ЧУДЕСНАЯ ЖИЗНЬ КЛЕТОК: КАК МЫ ЖИВЕМ И ПОЧЕМУ МЫ УМИРАЕМ [0]
ВИКТОРИНЫ К УРОКАМ БИОЛОГИИ [10]
РАЗВИТИЕ ЖИЗНИ НА ЗЕМЛЕ [32]
ЭТОЛОГИЯ - ОЧЕНЬ ИНТЕРЕСНО [37]
БИОЛОГИЧЕСКАЯ РАЗВЛЕКАЛОВКА [28]
ЭНТОМОЛОГИЯ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ [36]
ЧЕЛОВЕК [75]
МИКРОБЫ ХОРОШИЕ И ПЛОХИЕ [58]
РАСТЕНИЯ [168]
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СПОСОБНОСТЕЙ ЖИВОТНЫХ К КОЛИЧЕСТВЕНЫМ ОЦЕНКАМ ПРЕДМЕТНОГО МИРА [4]
ЧТО ВЫ ЗНАЕТЕ О СВОЕЙ НАСЛЕДСТВЕННОСТИ? [29]
СЕКРЕТЫ ПОВЕДЕНИЯ Homo sapiens [99]
ЕГЭ НА ОТЛИЧНО [10]
АУДИОКНИГИ ПО БИОЛОГИИ [6]
ИНТЕРЕСНЫЕ ЖИВОТНЫЕ. А ВЫ И НЕ ЗНАЛИ? [49]
ЗАДАНИЯ НА ВЫБОР ПРАВИЛЬНОГО УТВЕРЖДЕНИЯ [0]
ТЕСТОВЫЕ ЗАДАНИЯ ПО БИОЛОГИИ [43]
ЛАБОРАТОРНЫЕ РАБОТЫ ПО БИОЛОГИИ [40]
РАБОЧИЕ КАРТЫ ПО БИОЛОГИИ [6]
ЗООЛОГИЯ БЕСПОЗВОНОЧНЫХ [61]
ЛЕТНИЕ ТВОРЧЕСКИЕ РАБОТЫ УЧАЩИХСЯ ПО БИОЛОГИИ [12]
ЗООЛОГИЯ [87]
СТАНОВЛЕНИЕ ЧЕЛОВЕЧЕСТВА [17]
ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ЗООЛОГИИ [55]
Статистика

Онлайн всего: 2
Гостей: 2
Пользователей: 0
Главная » Статьи » ЧТО ВЫ ЗНАЕТЕ О СВОЕЙ НАСЛЕДСТВЕННОСТИ?

Любовь, инстинкт, рассудок, семья

Печальный факт свидетельствует, что дети есть далеко не во всех семьях. Установлено, что около 10 % браков в мире бесплодны. Еще около 20 % семей не могут иметь детей из-за спонтанных абортов и выкидышей. «Виновниками» бездетности в одинаковой мере могут быть и мужчины, и женщины, однако причины их бесплодия (как клинические, так и генетические) различны. В настоящее время описано несколько десятков наследственных болезней, или синдромов, сопровождающихся мужским или женским бесплодием. Спонтанные аборты у женщин могут быть вызваны целым рядом причин: нарушением хромосом плода или матери, несовместимостью плода и матери по системе групп крови АВ0, гетеро- или гомозиготностью по ряду заболеваний, влияющих на функции воспроизводства, многими наследственными болезнями матери, затрудняющими вынашивание плода в течение беременности и, наконец, различными клиническими нарушениями роженицы. Изучение спонтанных абортов показало, что около 20 % их связано с изменением кариотипа плода, а 5 % — с несовместимостью по системе групп крови АВ0 [Кулиев, 1974].


Выбираем ли мы гены для своих детей?

Гены, которые имеются у родителей, могут перейти к детям только в половинном количестве (из 46 хромосом в половые гаметы попадают только 23). С этих позиций, если оба родителя гетерозиготны по фенилкетонурии, то в такой супружеской паре с вероятностью 25 % может родиться больной ребенок.

Рассмотрим другую ситуацию. У одного из родителей 45 хромосом, но одна из двух 21-х хромосом присоединена к хромосоме 15-й. В этом случае с большой вероятностью может родиться ребенок с транслоцированным синдромом Дауна.

Ни одна семейная пара не хотела бы иметь ребенка с наследственным заболеванием. Может ли генетика помочь таким родителям? Да, может. В разработке методов профилактики генных и хромосомных заболеваний (аномалий) современная генетика достигла больших успехов. В ее арсенале имеется метод амниоцентеза (рис. 24), с помощью которого благодаря биохимическим анализам и изучению хромосомного набора у клеток, которые слущиваются с плода и находятся в околоплодной жидкости, можно идентифицировать около 100 генных и практически все хромосомные отклонения, отягощенности у развивающегося эмбриона в период до 18 недель беременности.

Метод амниоцентеза успешно используется в Японии. В этой стране в обязательном порядке и бесплатно для забеременевших пациенток старше 35 лет (читателю уже ясно, почему старше 35), а также для женщин, уже имеющих детей с отклонениями либо происходящих из семей с наследственно неполноценными родственниками, делается анализ околоплодной жидкости и находящихся в ней клеток от плода. При наличии наследственного заболевания у эмбриона пациенткам представляется возможность самим решать, рожать ребенка или нет. Такой подход позволяет в значительной степени снизить рождаемость наследственна неполноценных детей и в итоге ограждает семью от трагедии, а общество от необходимости организации специальных домов для детей-инвалидов.

Метод амниоцентеза — относительно трудоемкая и дорогостоящая процедура. Однако экономисты США подсчитали, что стоимость анализа для 900 женщин намного ниже стоимости прижизненной госпитализации одного больного, которая оценивается более чем в 100 тыс. долларов. Ежегодно в США рождается около 4 тыс. детей с наследственными болезнями и их госпитализация обходится в 1,5 млрд. долларов в год.

Рис. 24. Схема проведения амниоцентеза.


Из вышесказанного ясно, что родители должны тщательно следить за своим генеалогическим древом. Однако как узнать, гетерозиготен ли человек по данному летальному гену? Является ли он носителем транслокации? Наконец, кому делать амниоцентез? Ведь всем роженицам сделать такой анализ невозможно, да в этом и нет необходимости. Рождение ребенка с наследственным заболеванием возможно в тех супружеских парах, в родословных которых (одного или обоих супругов) уже встречались наследственные заболевания. Таким семьям следует обращаться в медико-генетическую консультацию, где врач по генеалогии родителей подтвердит вероятность рождения больного ребенка и при необходимости направит на цитогенетический (определение числа и формы хромосом) или биохимический анализ. Такие консультации в СССР открыты в Москве, Ленинграде, Киеве, Донецке, Минске, Алма-Ате, Ташкенте, Фрунзе, Ашхабаде, Риге, Вильнюсе, Тарту, Ереване, Кишиневе, Кемерове, Новосибирске и других городах.

Анализ работы медико-генетической консультации при Институте медицинской генетики АМН СССР в Москве, проведенный Р. С. Патютко [1975], показал, что за 1973—1974 годы у 77 % семей, обратившихся в медико-генетическую консультацию, родились больные дети. Естественно, что родители не хотели и не ожидали появления больного ребенка и, обратись они в консультацию до зачатия плода, такого несчастья могло бы не произойти.

Ученые США подсчитали, что более 5 % населения страны имеют наследственные отклонения и нуждаются в генетической консультации.

Выявление гетерозиготного носительства и гена фенилкетонурии медико-генетическая служба проводит специальным тестом с пищевой нагрузкой фенилаланином (одной из аминокислот).

А что же делать, если больной ребенок все-таки родился? Здесь на помощь приходит генетика. Установлено, что некоторые наследственные заболевания можно «лечить» на уровне фенотипа. В настоящее время возникло целое направление в генетике — «лечение» фенилкетонурии. Но как провести раннюю диагностику наследственного заболевания у новорожденного, если внешне у него не видно никаких отклонений от нормы? В этом случае медико-генетическая служба предлагает ряд скринирующих (скрининг — просеивание) методик. В настоящее время скринингу поддаются около 20 наследственных заболеваний у новорожденных. С этой целью у последних берется моча или кровь (из пятки) . Современное состояние генетики позволяет проводить скрининг одной пробы на разные наследственные заболевания в разных центрах, при этом для анализа высылается капля крови на бумаге в конверте.


Какая у вас группа крови?

Группа крови — врожденное свойство человека и неизменна в течение всей его жизни (онтогенеза).

К настоящему времени известно несколько систем группы крови (табл. 11). Каждая из этих систем наследственно обусловлена. Невозможно найти двух людей (кроме однояйцевых близнецов), которые имели бы одинаковые группы крови по всем системам. Это явление используется в судебной медицине. В клинической медицине для переливания крови необходимо знание группы крови системы АВ0 (I—IV группы крови) и резус-фактора.

Система групп крови АВ0 открыта в начале XX века австралийским ученым К. Ландштейнером при изучении поведения эритроцитов (красных кровяных телец) в сыворотке (жидкой части) крови разных людей. Ученый обратил внимание на тот факт, что эритроциты в сыворотке крови одних людей распределяются равномерно, а других — склеиваются. Используя разные комбинации эритроцитов и сывороток, он обнаружил три группы крови (I—III), а существование IV группы (более редкой) было установлено позднее. Частота встречаемости групп крови системы АВ0 в разных популяциях человека различна (табл. 12).

Обладание одной из четырех групп крови определяется парой генов, пришедших по одному от каждого из родителей. Каждый ген может быть в одной из трех аллелей (функциональных состояний) — А, В, 0. Аллели А и В доминируют над 0, но, оказавшись вместе в одном организме, А и В проявляют совместное действие (кодоминирование) и обусловливают наличие IV группы крови (табл. 13).

Многие считают, что у родителей и детей группа крови всегда одна и та же. Это заблуждение. Установлено, что совпадение здесь имеет место далеко не во всех случаях.

Фенотипически (то есть биохимически, морфологически или другими методами) можно определить четыре группы крови: I(0), II(А), III(В) и IV(АВ). Фенотипы I и IV групп совпадают с их генотипами. Генотипы же ВВ и В0 (для III группы крови), АА и А0 (для II группы) без знания групп крови родителей различать невозможно.

Таблица 11. Основные системы эритроцитарных антигенов *

Система Год открытия Основные аллели Число аллелей в системе
АВ0 1900 А, А1, В, Н 8
MNSs 1927 М, N, S, s, U 18
Р 1927 P1, P2, p, pK 4
Rhesus 1940 D, С, Е, с, е 35
Lutheran 1945 Lua, LuB 17
Keff 1946 К, k 18
Lewis 1946 Lea, LeB 2
Duffy 1950 Fya, FyB 6
Kidd 1951 Jka, Jkb 3
Diego 1955 Dia, Dib 2
Ii 1956 T, i 3
Xg 1962 X, ga 1

* Цитируется по: [В. H. Шабалин, Л. Д. Серова, 1988]


Таблица 12. Частота встречаемости эритроцитарных антигенов системы АВ0 в разных популяциях человека, %

Популяция Число изученных людей I(0) II(A) III(В) IV(AB)
Коренное население Австралии 603 54,3 40,9 3,8 1,0
Голландцы 14 483 46,3 42,1 8,5 3,1
Население Южной Англии 3 449 43,5 44,7 8,6 3,2
Голландские евреи 705 42,5 39,4 13,4 4,5
Русские евреи 1 475 36,6 41,7 15,5 6,1
Бушмены 336 83,0 17,0
Венгры 1 041 29,9 45,2 17,0 7,9
Арабы 2 917 44,0 33,0 17,7 4,1
Японцы 24 572 31,1 36,7 22,7 9,5
Русские 57 122 32,9 35,6 23,2 8,1
Африканцы (Конго) 500 45,6 22,2 24,2 8,9
Китайцы (Кантон) 500 45,5 22,6 25,0 6,1
Венгерские цыгане 925 28,5 26,6 35,3 9,6
Индийцы 2 357 30,2 24,5 37,2 8,1

Таблица 13. Наследование групп крови у человека

Мать Отец
Группа крови
I(0) II(A) * III(В) * IV(AB)
Группа крови Генотип Генотип
10 10 1А 1А 1А 10 1B 1B 1B 10 1A 1В
I(0) 10 10 10 10 1А 10 1А 10 1B 10 1B 10 1A 10
      10 10   10 10 1В 10
II(А)* 1А 1A 1А 10 1А 1А 1А 1А 1А 1B 1А 1B 1А 1А
      1А 10   1А 10 1A 1B
1А 10 1А 10 1A 1A 1А 1А   1А 1B 1A 1A
  10 10 1A 10 1А 10 1А 1B 1А 10 1A 1B
      10 10 1А 10 10 10 1A 10
          1А 10 1A 10
III(B)* 1В 1B 1B 10 1A 1В 1A 1B 1B 1B 1B 1B 1A 1B
      1B 10   1B 10 1B 1B
1B 10 1B 10 1A 1B 1A 1B   1B 1B 1B 1B
  10 10 1A 10 1B 10 1B 1B 1B 10 1A 1B
      10 10 1B 10 10 10 1А 10
      1А 10     1B 10
IV(AB) 1А 1В 1А 10 1А 1А 1A 1A 1B 1B 1А 10  
  1B 10 1А 1В 1A 10 1А 1B 1B 1B 1А 1A
      1В 10   1B 10 1В 1В
      1А 1В   1A 1B 1A 1B

* Группа имеет два генотипа.


Таблица 14. Связь групп крови с антителами и антигенами

Группа крови Антигены, содержащиеся в эритроцитах Антитела, содержащиеся в сыворотке крови
I(0) _ Анти А, анти В
II(A) А Анти В
III(В) В Анти А
IV(AB) АВ

Таблица 15. Варианты несовместимости матери и ребенка (по группам крови системы АВ0)

Мать Ребенок
Группа крови Генотип Группа крови Генотип
I 10 10 II 1А 10
    III 1В 10
II 1А 10 III 1В 10
    IV 1А 1В
III 1B 10 II 1А 10
    IV 1А 1В

Рассмотрим такой пример. Двое мужчин имеют II группу крови, а их жены — I. В этом случае у одной супружеской пары могут родиться двое детей со II (или с I) группой крови, а у другой пары возможен один ребенок с I, а другой — со II группой крови. I группа крови новорожденному гарантирована только в том случае, если оба родителя имеют эту группу. Если же у обоих родителей II или III группа крови, то их дети, кроме родительской, могут иметь и I группу крови. В случае, когда у родителей II и III группы крови (например, у матери — II, у отца —III), их дети могут обладать I—IV группами. У родителей с I и IV группами крови (например, у матери — I, у отца — IV) дети будут иметь II или III группу (см. табл. 13). Правда, недавно в специальной литературе появилось описание нескольких японских семей, у которых родители имели I и IV группы крови, а дети — IV. Такие семьи представляют большой научный интерес, а «неправильное» наследование IV группы крови тщательно исследуется.

Присутствие генов А и В обусловливает наличие в эритроцитах антигенов А и В, а их отсутствие приводит к появлению антител А и В в сыворотке крови (табл. 14). Если антиген А, содержащийся в эритроцитах, встречается с антигеном А, содержащимся в сыворотке, то происходит склеивание эритроцитов. В норме такого не происходит, так как в крови нет антител, способных склеивать собственные эритроциты (антигены). Но около 5% зигот (оплодотворенных яйцеклеток) погибает, а в среднем 1 % новорожденных имеют гемолитическую болезнь из-за несовместимости матери и ребенка по группам крови системы АВ0. Возможные варианты такого несовмещения показаны в табл. 15, Если, например, ребенок имеет генотип 1А10, а мать 1В10, то у ребенка есть антиген А, а у матери — антитело А. Последние проникают в кровь плода и склеивают, а затем и разрушают эритроциты, обусловливая этим гемолитическую болезнь. Ученые предполагают, что существует специальная генетическая система защиты плаценты, которая нейтрализует антитела матери до их попадания в кровь плода.


Резус-фактор (Rh)

Система групп крови резус открыта в 1940 году К. Ландштейнером. Изучая кровь человека и животных, ученый обнаружил, что кровь примерно 85 % обследованных людей подобна крови обезьян резус. Было доказано, Что кровь этих людей содержит антиген, идентичный имеющемуся у резуса. Обнаруженный антиген был назван резус-фактором (Rh). Вскоре было показано, что присутствие (или отсутствие) этого гена наследуется.

Рис. 25. Несовместимость по резус-фактору. Отец Rh+, мать Rh-, ребенок Rh+.


Резус-фактор может быть положительным или отрицательным. В первом случае он обусловливается доминантным (более сильным), во втором — рецессивным (менее сильным) геном. Если оба родителя имеют одинаковый резус-фактор (положительный или отрицательный), то иммунологического конфликта между организмом матери и плодом не происходит. Конфликт возникает, если отец имеет положительный, а мать — отрицательный резус-фактор. В этом случае плод будет иметь отцовский положительный (доминантный) резус-фактор, который вступит в иммунологический конфликт с материнским — отрицательным. Если же, напротив, у матери положительный резус-фактор, а у отца — отрицательный, то плод будет иметь материнский положительный (доминантный) резус-фактор, и в этом случае иммунологический конфликт не проявится.

При иммунологическом конфликте между организмом матери и плодом первый ведет себя так, как будто это не его ребенок, а инородное тело. Антигены плода вызывают появление в организме матери антител, способных при высоких концентрациях (титрах) нейтрализовать развитие плода и освободить организм матери от «чужеродного» тела. Однако при первой беременности количество антител в организме матери не повышается до такого уровня, чтобы существенно повредить (или убить) плод: исход, как правило, бывает благополучным. Но при второй беременности к антителам, которые остались в крови матери от первого ребенка, добавляется еще определенное их количество. В этом случае эритроциты ребенка будут уже частично повреждаться. Если между первой и второй беременностями не было прерванных беременностей, то и второй ребенок рождается вполне здоровым. Но если до беременности производились переливания крови без учета резус-фактора, которые могут быть приравнены (в зависимости от количества прилитой крови) к беременности, то второй ребенок будет неполноценным (рис. 25).

В Новосибирске и в других городах Западной Сибири отмечено несколько случаев, когда врачи делали (и неоднократно) переливание крови при тяжелых заболеваниях девочкам без учета резус-фактора (который был детально изучен лишь около 20 лет назад), В результате, когда девочки стали взрослыми, все беременности у них заканчивались гибелью эмбриона или спонтанным абортом.

Однако современная медицина может помочь таким семьям иметь детей. Созданный в Ленинграде Институт переливания крови производит частичную замену крови матери с целью снижения титра антител до неопасных уровней для будущего плода.

Категория: ЧТО ВЫ ЗНАЕТЕ О СВОЕЙ НАСЛЕДСТВЕННОСТИ? | Добавил: admin (03.02.2015)
Просмотров: 267 | Теги: генная программа человека, ДНК, деление клетки, мужские и женские хромосомы, наследственность, генотип, хромосомы, аутосомно-доминантные наследования | Рейтинг: 0.0/0
Поиск

РАЗВИТИЕ БИОЛОГИИ

БИОЛОГИЧЕСКИЕ СПРАВОЧНИКИ
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Вход на сайт


    Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru