Среда, 01.04.2020
                       


МЕНЮ
УЧИТЕЛЮ БИОЛОГИИ
К УРОКАМ БИОЛОГИИ
ПУТЕШЕСТВИЕ В МИР РАСТЕНИЙ
В МИРЕ ЖИВОТНЫХ
АНАТОМИЯ БЕЗ ТАЙН И ЗАГАДОК
ИНТЕРЕСНО УЗНАТЬ
БИОЛОГИЧЕСКАЯ РАЗВЛЕКАЛОВКА
Категории раздела
КАК МЫ ДУМАЕМ [104]
ОТКРЫТКИ "В ЦАРСТВЕ ФЛОРЫ" [354]
ЕСТЕСТВЕННЫЕ ТЕХНОЛОГИИ БИОЛОГИЧЕСКИХ СИСТЕМ [48]
БИОЛОГИЯ ПОВЕДЕНИЯ ЧЕЛОВЕКА И ДРУГИХ ЗВЕРЕЙ [156]
МОРСКИЕ ЖИВОТНЫЕ [124]
ДАРВИНИЗМ В ХХ ВЕКЕ [60]
ДОИСТОРИЧЕСКАЯ ЖИЗНЬ [45]
ОЛИМПИАДЫ ПО БИОЛОГИИ [36]
ЧУДЕСНАЯ ЖИЗНЬ КЛЕТОК: КАК МЫ ЖИВЕМ И ПОЧЕМУ МЫ УМИРАЕМ [0]
ВИКТОРИНЫ К УРОКАМ БИОЛОГИИ [10]
РАЗВИТИЕ ЖИЗНИ НА ЗЕМЛЕ [32]
ЭТОЛОГИЯ - ОЧЕНЬ ИНТЕРЕСНО [37]
БИОЛОГИЧЕСКАЯ РАЗВЛЕКАЛОВКА [28]
ЭНТОМОЛОГИЯ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ [36]
ЧЕЛОВЕК [123]
МИКРОБЫ ХОРОШИЕ И ПЛОХИЕ [58]
РАСТЕНИЯ [168]
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СПОСОБНОСТЕЙ ЖИВОТНЫХ К КОЛИЧЕСТВЕНЫМ ОЦЕНКАМ ПРЕДМЕТНОГО МИРА [4]
ЧТО ВЫ ЗНАЕТЕ О СВОЕЙ НАСЛЕДСТВЕННОСТИ? [29]
СЕКРЕТЫ ПОВЕДЕНИЯ Homo sapiens [99]
ЕГЭ НА ОТЛИЧНО [10]
АУДИОКНИГИ ПО БИОЛОГИИ [6]
ИНТЕРЕСНЫЕ ЖИВОТНЫЕ. А ВЫ И НЕ ЗНАЛИ? [49]
ЗАДАНИЯ НА ВЫБОР ПРАВИЛЬНОГО УТВЕРЖДЕНИЯ [0]
ТЕСТОВЫЕ ЗАДАНИЯ ПО БИОЛОГИИ [43]
ЛАБОРАТОРНЫЕ РАБОТЫ ПО БИОЛОГИИ [40]
РАБОЧИЕ КАРТЫ ПО БИОЛОГИИ [6]
ЗООЛОГИЯ БЕСПОЗВОНОЧНЫХ [61]
ЛЕТНИЕ ТВОРЧЕСКИЕ РАБОТЫ УЧАЩИХСЯ ПО БИОЛОГИИ [12]
ЗООЛОГИЯ [87]
СТАНОВЛЕНИЕ ЧЕЛОВЕЧЕСТВА [17]
ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ЗООЛОГИИ [55]
Статистика

Онлайн всего: 3
Гостей: 2
Пользователей: 1
olivec_mikola
Главная » Статьи » ДАРВИНИЗМ В ХХ ВЕКЕ

Адаптивные модификации — битый козырь ламаркистов
Эта категория ненаследственных изменений фенотипа возникает из предыдущей — неприспособительных морфозов и модификаций. Если изменение окажется в данном случае приспособительным и повысит шансы изменившейся особи на выживание, ее потомки будут сохранять ту же тенденцию. Фактически описанные нами ранее случаи адаптивного синтеза белков у бактерий — и есть адаптивные модификации. В том и различие между мутациями и модификациями: первые — сырой материал для естественного отбора, вторые — его конечный результат.

Чаще всего модификации описываются у растений, и это вполне понятно. Подвижные животные в случае изменения внешних условий могут переместиться в иное, более привычное для них место. Растения всю жизнь прикованы к тому месту, куда ветер, птицы или животные занесли их семена. Много модификаций описано и для сидячих или малоподвижных животных. Колония одного и того же вида рифового коралла может иметь совершенно разную внешность в зависимости от прибоя и течения. Обычные, всем известные двустворчатые моллюски — беззубки настолько изменчивы, что один и тот же вид порой дробили на десятки. У сидячих и малоподвижных организмов модификации так распространены, что являются поистине бичом систематиков. Еще Ламарк ссылался на известный факт, что водные полупогруженные растения имеют совершенно разные листья: надводные листья стрелолиста, например, стреловидные, а подводные — лентовидные.

Если модификации объединены в одном растении, еще не беда. Хуже, когда весь облик растения меняется в зависимости от местообитания. Нет нужды в большом количестве примеров — сравните хотя бы сосну в сосновом бору и на торфяном болоте.

Порой бывает трудно в таких случаях определить индуктор, вызывающий модификацию. Казалось бы, в случае стрелолиста индуктором должна быть вода. Но если вы вырастите стрелолист на суше при ослабленном освещении, у него и в воздухе разовьются лентовидные листья. Есть и еще более разительные примеры. При засухе многие растения образуют засухоустойчивые листья. На первый взгляд индуктор — недостаток влаги. Но такие же листья возникают, если растение поставить в дистиллированную воду, лишенную минеральных солей. Именно такие случаи, когда индуктор один, а фактор среды, к которому приспосабливается модифицируемое растение, другой, с точки зрения ламаркизма необъяснимы.

Подчеркнем, что модификации сами по себе ненаследственны. Наследуется лишь способность к ним (то есть норма реакции, о которой мы уже говорили), как и любые генетически детерминируемые признаки. Японские садоводы из века в век ищут в горах выросшие карликами деревья и содержат их в таких условиях, чтобы они развивались, цвели, но не росли. Такие деревца — бонсаи — действительно очаровательны. Но из семян бонсаи вырастают обычные деревья.

Большинство тех особенностей структур и функций высших организмов, которые мы обозначаем несколько расплывчатым термином «признаки», — полигенны, определяются многими генами. Таковы, например, признаки рыб: число позвонков и число лучей в плавниках, число жаберных тычинок и т. д. Многие из них, хотя бы число позвонков, зависят от температуры в момент развития икринки. Если мы будем инкубировать икру датской форели при пониженной температуре, то вышедшие из нее мальки по числу позвонков будут походить на форелей из рек Норвегии. Повышенная температура, напротив, обусловливает возникновение малопозвонковой модификации, схожей с форелями Адриатики. Замечательно, что многопозвонковость скандинавских форелей и малопозвонковость адриатических уже генетически жестко закреплена. Это признаки, на которые изменения температуры перестали влиять. Форели средиземноморского бассейна не сталкиваются уже давно с низкими температурами, и степень изменчивости их фенотипа снизилась, а у северных форелей наблюдался тот же процесс, но направленный в обратную сторону. Датские форели сталкиваются и с теплом и с холодом; им выгоднее остаться способными к модификационным изменениям, сохранять широкую норму реакции.

Причины этого процесса понятны: хотя модификации и не наследственны, способность к ним заложена в генотипе. Если нужда в модификации отпадает, отбор уже не контролирует этот механизм. В результате накопления неконтролируемых отбором мутаций происходит утеря реакции фенотипа на давно не встречавшиеся в жизни популяции факторы среды.

Часто упоминаемый в романах Скотта и Стивенсона шотландский тетерев — граус не что иное, как белая куропатка. Белой она называется потому, что белеет зимой. Однако в малоснежных областях северной Англии и Шотландии граус потерял способность к смене окраски: зимняя окраска ему просто уже не нужна. Основываясь на этом и ряде других изменений, грауса порой выделяют в отдельный вид.

Много подобных случаев описано и у растений. Так, некоторые широко распространенные растения образуют долинные и горные формы. Если семена горной формы пересадить в долину, из них вырастут особи долинной формы. А близкие виды, распространенные только в горах, даже в долинах останутся горными.

Эта тенденция, широко распространенная среди видов, перешедших от изменчивых условий к более стабильным, таит в себе опасность. Организм с узкой нормой реакции подобен конусу, поставленному на вершину: любой толчок выводит его из равновесия. Бесчисленные вымершие виды животных и растений постигла эта участь.

Быть может, это одна из причин, почему наши средние широты, в отличие от тропических, являются ареной становления новых, прогрессивных видов, — в тропиках условия много стабильнее.

Проанализировав множество подобных фактов, наш замечательный эволюционист И. И. Шмальгаузен пришел к выводу, что в данном случае мы имеем дело с одним из проявлений стабилизирующего отбора: ламаркистское объяснение здесь явно неприемлемо.

Известный эмбриолог и генетик К. Уоддингтон описал процесс, названный им «генетической ассимиляцией». Если куколок дрозофилы на определенной стадии подвергнуть на несколько часов действию температуры, превышающей оптимальную, у части вышедших из них мух наблюдается фенокопия, похожая на мутацию — разрыв крыловой жилки. Отберем этих мух и будем разводить «в себе» (инбридинг), в каждом поколении подвергая температурному шоку и последующему отбору. Через 20 поколений частота возникновения фенокопий возрастает почти до 100 %, и для их возникновения иногда не требуется теплового шока. Казалось бы, это типичная ламаркистская «ассимиляция внешних условий». Но вспомним, что в каждом поколении велся отбор на пенетрантность (см. главу о наследственности) проявления признака. Фактически мы накопили в популяции мух — носителей генов, вызывающих модификацию в данном направлении. Дальнейшие опыты показали, что, во-первых, чем более гетерогенна популяция, тем быстрее проходит процесс «ассимиляции», а, во-вторых, разные линии резко отличаются реакцией на отбор. Это вполне понятно: чтобы отбор действовал, для него нужен материал (вспомним мух, приспосабливающихся к ДДТ).

Итак, способность организмов к адаптивным модификациям, к тем изменениям фенотипа, на которые, как говорил К. А. Тимирязев, отбором наложена «печать полезности», генетически запрограммирована. Несомненно, в процессе эволюции колебания нормы реакции играли и играют важную роль. Быть может, один из самых интересных и животрепещущих вопросов теории эволюции — это изучение тех путей и способов, какими условия внешней среды выявляют в фенотипе разные стороны генетической информации. На фоне открытий последних лет в этой области ламаркистское «приспособление вследствие приспособляемости» выглядит убогой тавтологией.

Трудно переоценить и практическое значение проблемы управления нормой реакции. Так, хотя мы и не научились исправлять мутировавшие гены, но в ряде случаев уже можем при помощи комплекса внешних факторов блокировать их действие, как бы вызывая модификацию, «обратную по знаку» (простейший пример — лечение наследственного диабета инсулином).

Мы можем заключить, что все известные нам случаи приспособления удовлетворительно объясняются «по Дарвину». Ламаркистское истолкование каждый раз не выдерживает критического анализа. Но, может быть, ламаркизм неуязвим в другом — например, в объяснении эволюционного прогресса?..
Категория: ДАРВИНИЗМ В ХХ ВЕКЕ | Добавил: admin (12.12.2014)
Просмотров: 182 | Теги: Мендель, фенотип и генотип, учение Дарвина, изменчивость, эволюционная теория, происхождение видов, развитие биологии, Ген, хромосомы, дарвинизм в ХХ | Рейтинг: 0.0/0
Поиск

РАЗВИТИЕ БИОЛОГИИ

БИОЛОГИЧЕСКИЕ СПРАВОЧНИКИ
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Вход на сайт


    Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru