Пятница, 10.04.2020
                       


МЕНЮ
УЧИТЕЛЮ БИОЛОГИИ
К УРОКАМ БИОЛОГИИ
ПУТЕШЕСТВИЕ В МИР РАСТЕНИЙ
В МИРЕ ЖИВОТНЫХ
АНАТОМИЯ БЕЗ ТАЙН И ЗАГАДОК
ИНТЕРЕСНО УЗНАТЬ
БИОЛОГИЧЕСКАЯ РАЗВЛЕКАЛОВКА
Категории раздела
КАК МЫ ДУМАЕМ [93]
ОТКРЫТКИ "В ЦАРСТВЕ ФЛОРЫ" [354]
ЕСТЕСТВЕННЫЕ ТЕХНОЛОГИИ БИОЛОГИЧЕСКИХ СИСТЕМ [48]
БИОЛОГИЯ ПОВЕДЕНИЯ ЧЕЛОВЕКА И ДРУГИХ ЗВЕРЕЙ [156]
МОРСКИЕ ЖИВОТНЫЕ [124]
ДАРВИНИЗМ В ХХ ВЕКЕ [60]
ДОИСТОРИЧЕСКАЯ ЖИЗНЬ [45]
ОЛИМПИАДЫ ПО БИОЛОГИИ [36]
ЧУДЕСНАЯ ЖИЗНЬ КЛЕТОК: КАК МЫ ЖИВЕМ И ПОЧЕМУ МЫ УМИРАЕМ [0]
ВИКТОРИНЫ К УРОКАМ БИОЛОГИИ [10]
РАЗВИТИЕ ЖИЗНИ НА ЗЕМЛЕ [32]
ЭТОЛОГИЯ - ОЧЕНЬ ИНТЕРЕСНО [37]
БИОЛОГИЧЕСКАЯ РАЗВЛЕКАЛОВКА [28]
ЭНТОМОЛОГИЯ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ [36]
ЧЕЛОВЕК [75]
МИКРОБЫ ХОРОШИЕ И ПЛОХИЕ [58]
РАСТЕНИЯ [168]
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СПОСОБНОСТЕЙ ЖИВОТНЫХ К КОЛИЧЕСТВЕНЫМ ОЦЕНКАМ ПРЕДМЕТНОГО МИРА [4]
ЧТО ВЫ ЗНАЕТЕ О СВОЕЙ НАСЛЕДСТВЕННОСТИ? [29]
СЕКРЕТЫ ПОВЕДЕНИЯ Homo sapiens [99]
ЕГЭ НА ОТЛИЧНО [10]
АУДИОКНИГИ ПО БИОЛОГИИ [6]
ИНТЕРЕСНЫЕ ЖИВОТНЫЕ. А ВЫ И НЕ ЗНАЛИ? [49]
ЗАДАНИЯ НА ВЫБОР ПРАВИЛЬНОГО УТВЕРЖДЕНИЯ [0]
ТЕСТОВЫЕ ЗАДАНИЯ ПО БИОЛОГИИ [43]
ЛАБОРАТОРНЫЕ РАБОТЫ ПО БИОЛОГИИ [40]
РАБОЧИЕ КАРТЫ ПО БИОЛОГИИ [6]
ЗООЛОГИЯ БЕСПОЗВОНОЧНЫХ [61]
ЛЕТНИЕ ТВОРЧЕСКИЕ РАБОТЫ УЧАЩИХСЯ ПО БИОЛОГИИ [12]
ЗООЛОГИЯ [87]
СТАНОВЛЕНИЕ ЧЕЛОВЕЧЕСТВА [17]
ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ЗООЛОГИИ [55]
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Главная » Статьи » ДАРВИНИЗМ В ХХ ВЕКЕ

Число хромосом — паспорт вида
Итак, в настоящее время мутациями называют изменения свойств и признаков организма, вызванные изменением структуры генома — совокупности хромосом клетки. Эти изменения иногда можно наблюдать в клетке в оптический микроскоп. В первую очередь наблюдаются так называемые геномные мутации, при которых умножается набор хромосом, свойственный виду. Такое явление называют автополиплоидией.

Число хромосом, на которые разделяется генный материал ядра при делении клеток, весьма варьирует у разных видов — от 2 хромосом у лошадиной аскариды до 1260 у тропического папоротника ужовника из Индии. Есть данные, что у одноклеточных организмов — радиолярий число хромосом достигает 1600. Дальнейшее умножение генного материала приводит к потере митоза и возникновению амитоза — простого деления ядра без скрупулезно точного механизма расхождения хромосом.

Наиболее широко полиплоидия представлена у растений. Она встречается у низших растений — водорослей, у грибов. Хорошо изучен процесс полиплоидизации у высших, цветковых растений. Многие роды и виды растений представляют полиплоидные ряды с числом хромосом n[7], 2n, 3n, 4n — до 308n у некоторых форм шелковицы и 265n — у мятлика.

С полиплоидными рядами связан один парадокс эволюции. Так, если гаплоидное число хромосом у растения n, а диплоидное, соответственно, 2n, то тетраплоидная форма (4n), возникнув в течение одного поколения, сразу поведет себя как новый вид, генетически изолированный от материнской формы. Это вполне понятно: при скрещивании образуется стерильный триплоид, так как одна гамета имеет хромосомный набор n, вторая 2n, а оплодотворенная яйцеклетка 3n. Три, как известно, на два не делится. Поэтому процесс редукционного деления ядра у триплоидов (мейоз, см. стр. 19) приведет к неравномерному расхождению генного материала по гаметам и бесплодию. Многие специалисты так и полагают, что в данном случае скачком возникает новый вид. Вряд ли это правильно — генетическая информация у полиплоидных форм та же, изменяется только ее количество. Генетическая изоляция, неспособность скрещиваться, — мы будем это неоднократно подчеркивать — необходимый, но еще недостаточный критерий вида.

Однако фенотип полиплоидов нередко изменяется. Полиплоиды — часто крупные, а то и гигантские формы с увеличенными ядрами и клетками. Жизнеспособность и продуктивность их может быть гораздо выше, чем у обычных диплоидов, что нередко используется в селекции культурных растений. Известны высокопродуктивные полиплоиды картофеля и хлопчатника, льна и гречихи, пшеницы и овса, земляники и сахарного тростника — список этот можно многократно увеличить. Главный поставщик натурального каучука — гевея у себя на родине, в Бразилии, имела 36 хромосом (здесь и далее без оговорок приводятся числа для диплоидных наборов — 2n). В юго-восточной Азии культивируются 72-хромосомные формы гевеи.

Даже не образующие семян триплоиды высоко ценятся в хозяйстве — упомянем только гигантскую триплоидную осину, культурный бессемянный банан и ряд других форм, размножающихся вегетативно.

Было бы, однако, ошибкой утверждать, что полиплоидия всегда связана с увеличением мощности растения. По-видимому, есть некий оптимальный уровень полиплоидности, разный у разных видов, за которым начинается как бы разлад взаимоотношений ядра и цитоплазмы и, как следствие этого, — карликовость, снижение жизнеспособности и продуктивности.

В эволюции растений полиплоидия проявляется двояко — как тормоз и как стимулятор прогресса. Многие древние растения (такие как древовидные папоротники, магнолия, гигантская секвойя или необычайный ботанический монстр из пустыни Калахари — вельвичия удивительная) — полиплоиды. В данном случае избыточность генетической информации в полиплоидном наборе тормозит эволюцию. В других случаях полиплоиды более изменчивы, легче приспосабливаются к новым условиям, нередко заселяют места на границе ареала с крайними условиями существования. Больше всего полиплоидов в Арктике, в высокогорных районах и пустынях (на Шпицбергене, например, 80 % видов — полиплоиды).

Не менее широко распространена у растений аллополиплоидия — удвоение генного материала у межвидовых или межродовых гибридов. Обычно такие гибриды бесплодны, так как хромосомы одного вида не находят себе парных хромосом-гомологов при мейозе. Иное дело, если хромосомный набор гибрида удваивается (возникает амфидиплоид). Здесь нельзя не вспомнить пионерские работы замечательного советского генетика Г. Д. Карпеченко, получившего впервые межродовой гибрид капусты и редьки. Такие гибриды обычно не давали потомства, потому что образовывали гаметы с нарушенным числом хромосом. Полученный Карпеченко гибридный тетраплоид был вполне плодовитым и не скрещивался ни с кем из родителей — ни с редькой, ни с капустой. Формально он заслуживал выделения в новый род — редькокапуста — рафанобрассика.

По проложенному Карпеченко пути устремилось немало исследователей. При этом не только создавались новые виды (вернее, гибриды, могущие стать новыми видами после «пришлифовки» отбором к условиям внешней среды), но и ресинтезировались старые. Из скрещивания алычи с терном удалось, например, заново сконструировать сливу. Таким же путем был ресинтезирован табак и рапс, пикульник и разные виды пшениц.
Категория: ДАРВИНИЗМ В ХХ ВЕКЕ | Добавил: admin (13.12.2014)
Просмотров: 228 | Теги: Мендель, фенотип и генотип, учение Дарвина, изменчивость, эволюционная теория, происхождение видов, развитие биологии, Ген, хромосомы, дарвинизм в ХХ | Рейтинг: 0.0/0
Поиск

РАЗВИТИЕ БИОЛОГИИ

БИОЛОГИЧЕСКИЕ СПРАВОЧНИКИ
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Вход на сайт


    Copyright MyCorp © 2020
    Яндекс.Метрика Рейтинг@Mail.ru